Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 204(4): 861-874, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589583

RESUMEN

Scavenging dynamics are influenced by many abiotic and biotic factors, but there is little knowledge of how scavengers respond to extreme weather events. As carrion is a major driver of the organisation and structure of food webs within ecological communities, understanding the response of scavengers to extreme weather events is critical in a world that is increasingly subject to climate change. In this study, vertebrate scavenging and carcass persistence rates were quantified in the Simpson Desert of central Australia; a system that experiences major fluctuations and extremes in weather conditions. Specifically, a total of 80 adult red kangaroo (Osphranter rufus) carcasses were placed on the landscape and monitored using remote sensor cameras. This included 40 carcasses monitored before and then 40 carcasses monitored after a major flooding event. The carcasses were monitored equally before and after the flood across different seasons (warm and cool) and in dune and interdune habitats. Overall, a total of 8124 scavenging events for 97,976 visitation minutes were recorded for 11 vertebrate species within 30 days of carcass placement pre- and post-flood. Vertebrate scavenging increased post-flood in the warm season, especially by corvids which quadrupled their scavenging events during this time. There was little difference in carcass persistence between habitats, but carcasses persisted 5.3-fold longer post-flood in warm seasons despite increased vertebrate scavenging. The results demonstrate that a flood event can influence scavenging dynamics and suggest a need to further understand how seasons, habitats and extreme weather events can drive changes in carrion-based food webs.


Asunto(s)
Ecosistema , Inundaciones , Estaciones del Año , Animales , Australia , Vertebrados/fisiología , Cadena Alimentaria , Cambio Climático
2.
BMC Public Health ; 24(1): 749, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459461

RESUMEN

BACKGROUND: Racial/ethnic disparities in the HIV care continuum have been well documented in the US, with especially striking inequalities in viral suppression rates between White and Black persons with HIV (PWH). The South is considered an epicenter of the HIV epidemic in the US, with the largest population of PWH living in Florida. It is unclear whether any disparities in viral suppression or immune reconstitution-a clinical outcome highly correlated with overall prognosis-have changed over time or are homogenous geographically. In this analysis, we 1) investigate longitudinal trends in viral suppression and immune reconstitution among PWH in Florida, 2) examine the impact of socio-ecological factors on the association between race/ethnicity and clinical outcomes, 3) explore spatial and temporal variations in disparities in clinical outcomes. METHODS: Data were obtained from the Florida Department of Health for 42,369 PWH enrolled in the Ryan White program during 2008-2020. We linked the data to county-level socio-ecological variables available from County Health Rankings. GEE models were fit to assess the effect of race/ethnicity on immune reconstitution and viral suppression longitudinally. Poisson Bayesian hierarchical models were fit to analyze geographic variations in racial/ethnic disparities while adjusting for socio-ecological factors. RESULTS: Proportions of PWH who experienced viral suppression and immune reconstitution rose by 60% and 45%, respectively, from 2008-2020. Odds of immune reconstitution and viral suppression were significantly higher among White [odds ratio =2.34, 95% credible interval=2.14-2.56; 1.95 (1.85-2.05)], and Hispanic [1.70 (1.54-1.87); 2.18(2.07-2.31)] PWH, compared with Black PWH. These findings remained unchanged after accounting for socio-ecological factors. Rural and urban counties in north-central Florida saw the largest racial/ethnic disparities. CONCLUSIONS: There is persistent, spatially heterogeneous, racial/ethnic disparity in HIV clinical outcomes in Florida. This disparity could not be explained by socio-ecological factors, suggesting that further research on modifiable factors that can improve HIV outcomes among Black and Hispanic PWH in Florida is needed.


Asunto(s)
Etnicidad , Infecciones por VIH , Humanos , Teorema de Bayes , Florida/epidemiología , Disparidades en Atención de Salud , Hispánicos o Latinos , Infecciones por VIH/epidemiología , Blanco , Negro o Afroamericano
3.
Biol Rev Camb Philos Soc ; 99(2): 562-581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148253

RESUMEN

Carrion acts as a hotspot of animal activity within many ecosystems globally, attracting scavengers that rely on this food source. However, many scavengers are invasive species whose impacts on scavenging food webs and ecosystem processes linked to decomposition are poorly understood. Here, we use Australia as a case study to review the extent of scavenging by invasive species that have colonised the continent since European settlement, identify the factors that influence their use of carcasses, and highlight the lesser-known ecological effects of invasive scavengers. From 44 published studies we identified six invasive species from 48 vertebrates and four main groups of arthropods (beetles, flies, ants and wasps) that scavenge. Invasive red foxes (Vulpes vulpes), domestic dogs (Canis familiaris), feral pigs (Sus scrofa), black rats (Rattus rattus) and feral cats (Felis catus) were ranked as highly common vertebrate scavengers. Invasive European wasps (Vespula germanica) are also common scavengers where they occur. We found that the diversity of native vertebrate scavengers is lower when the proportion of invasive scavengers is higher. We highlight that the presence of large (apex) native vertebrate scavengers can decrease rates of scavenging by invasive species, but that invasive scavengers can monopolise carcass resources, outcompete native scavengers, predate other species around carcass resources and even facilitate invasion meltdowns that affect other species and ecological processes including altered decomposition rates and nutrient cycling. Such effects are likely to be widespread where invasive scavengers occur and suggest a need to determine whether excessive or readily available carcass loads are facilitating or exacerbating the impacts of invasive species on ecosystems globally.


Asunto(s)
Ecosistema , Avispas , Animales , Gatos , Perros , Ratas , Animales Salvajes , Peces , Cadena Alimentaria , Zorros , Especies Introducidas , Vertebrados
4.
R Soc Open Sci ; 4(9): 170317, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989739

RESUMEN

Predators often display dietary shifts in response to fluctuating prey in cyclic systems, but little is known about predator diets in systems that experience non-cyclic prey irruptions. We tracked dietary shifts by feral cats (Felis catus), red foxes (Vulpes vulpes) and dingoes (Canis dingo) through a non-cyclic irruption of small mammalian prey in the Simpson Desert, central Australia. We predicted that all three predators would alter their diets to varying degrees as small mammals declined post irruption, and to test our predictions we live-trapped small mammals through the irruption event and collected scats to track predator diets. Red foxes and dingoes included a broader variety of prey in their diets as small mammals declined. Feral cats did not exhibit a similar dietary shift, but did show variable use and selectivity of small mammal species through the irruption cycle. Results were largely consistent with prior studies that highlighted the opportunistic feeding habits of the red fox and dingo. They also, however, showed that feral cats may exhibit less dietary flexibility in response to small mammal irruptions, emphasizing the importance of tracking predator diets before, during and after irruption events.

5.
PLoS One ; 9(2): e90566, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587396

RESUMEN

In open, arid environments with limited shelter there may be strong selection on small prey species to develop behaviors that facilitate predator avoidance. Here, we predicted that rodents should avoid predator odor and open habitats to reduce their probability of encounter with potential predators, and tested our predictions using a native Australian desert rodent, the spinifex hopping-mouse (Notomys alexis). We tested the foraging and movement responses of N. alexis to non-native predator (fox and cat) odor, in sheltered and open macro- and microhabitats. Rodents did not respond to predator odor, perhaps reflecting the inconsistent selection pressure that is imposed on prey species in the desert environment due to the transience of predator-presence. However, they foraged primarily in the open and moved preferentially across open sand. The results suggest that N. alexis relies on escape rather than avoidance behavior when managing predation risk, with its bipedal movement probably allowing it to exploit open environments most effectively.


Asunto(s)
Clima Desértico , Ecosistema , Muridae/fisiología , Conducta Predatoria/fisiología , Animales , Animales Salvajes/fisiología , Australia , Reacción de Prevención/fisiología , Gatos/fisiología , Señales (Psicología) , Cadena Alimentaria , Zorros/fisiología , Geografía , Movimiento/fisiología , Odorantes , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...